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Abstract

The basic objective of the work reported in this paper is to extend a nine-node degenerated shell element developed

earlier for stress analysis to the free vibration analysis of thick laminated composites. The nine-noded degenerated shell

element is preferable to conventional solid elements for the modeling and analysis of laminated composite shell structures

since the shell element works for both thick and thin shells. An enhanced interpolation of the transverse shear strains in the

natural coordinates is used in this formulation to produce a shear locking free element and an enhanced interpolation of

the membrane strains in the local coordinates is used to produce a membrane locking free element. The interpolation

functions used in formulating the assumed strains are based on the Lagrangian interpolation polynomials. Various

numerical examples are analyzed and their results are compared with the existing exact solutions where available and the

numerical solutions calculated from other shell finite element formulations, to benchmark the current formulation.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated composites shell and plate structures are widely used in many branches of engineering because of
their high strength to weight ratio, low specific gravities and modulus to weight ratio. The importance of composite
shell structures and analysis complexity leads to the use of finite element (FE) method for the solution of many
types of problems. In engineering practice it is of vital importance to conduct the dynamic analysis of structures so
as to use the information in the design process. Large number of thin shell elements has been developed to meet the
demands in different industries. In the context of FE analysis, numerous elements have been proposed for the
analysis of shell like structures. These range from simple flat plate elements to more sophisticated doubly curved
elements based on thin shell theory. Three-dimensional (3-D) elements were used initially to analyze thick shell
structures. Ahmad et al. [1] put forward the degenerated solid approach for thick shells. The degeneration concept
directly discretizes the 3-D field equation in terms of mid-surface nodal variables. However, it was found that there
were serious defects such as locking phenomena in the degenerated shell element. Zienkiewicz et al. [2] improved
the degenerated shell element by reducing the order of numerical integration, to eliminate shear and membrane
locking. Pawsey et al. [3] applied selective integration procedure to the degenerated shell element to eliminate shear
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and membrane locking. However, shell elements with reduced integration suffered from mechanisms. Huang and
Hinton [4] proposed the assumed strain method to avoid locking phenomena. This assumed strain method has
been used successfully in stress calculations. Lee et al. [5] extended the nine-noded degenerate shell element for free
vibration analysis. He used the assumed natural strain method to eliminate the locking phenomena. It can be seen
that there have been few investigations on the performance of nine noded assumed strain degenerated shell
elements to laminated shells under free and forced vibrations.

In this paper a nine noded degenerated shell element formulation for dynamic analysis of laminated plates
and shells is provided with emphasis on terms related to laminated composite stiffness and mass matrices.
Numerical validation has been done using existing exact solutions and numerical solutions from other shell FE
formulations. The geometry of the shell is represented by the coordinates and normal vectors of its middle
surface [1]. The middle surface is modeled by the degenerate isoparametric element in 3-D space. The element
used in the formulation is a nine-node Lagrangian element. Each node has five degrees-of-freedom (dof), three
translations and two rotations with respect to the axes in the plane of the middle surface. The independent
rotational and displacement dof permit transverse shear deformation to be taken into account. The global
coordinates of the pairs of points on the top and bottom surface at each node are used to define the geometry.
Different coordinate systems are adopted in the degenerated shell element formulation (see Fig. 1).

1.1. Global Cartesian coordinate system (X,Y,Z)

The global Cartesian coordinate system is used to define the nodal coordinates and the displacements. The
global stiffness/mass matrices and the applied force vector are also referred to this coordinate system.

1.2. Curvilinear coordinate system (x, Z, z)

The shape functions Ni are expressed in terms of the curvilinear coordinate system. The middle surface of
the shell element is defined by the x, Z coordinates. The z direction is only approximately normal to the middle
surface and varies from �1 to +1 in the thickness direction.
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Fig. 1. Coordinate systems: (a) global and nodal coordinate system, (b) curvilinear coordinate system and local coordinate system at

z ¼ constant and (c) local coordinate system at Z ¼ constant.
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1.3. Local Cartesian coordinate system (x, y, z)

The local Cartesian coordinate system is used to define local stresses and strains at any point within the shell
element. At such a point the z direction is taken to be normal to the surface z ¼ constant. The vector ẑ defines
the z direction and is obtained from the cross product of vectors which are tangential to the x and Z direction
so that

ẑ ¼ x;x ; y;x ; z;x
� �

� x;Z ; y;Z ; z;Z
� �T

. (1)

The vector x̂ in the x direction is taken to coincide with the tangent to the x direction so that

x̂ ¼ x;x ; y;x ; z;x
� �T

. (2)

The vector ŷ in the y direction is obtained by the cross product of ẑ and x̂ so that

ŷ ¼ ẑ� x̂. (3)

The local coordinate system varies throughout the shell. The direction cosine matrix [a] which enables the
transformation between the local and global coordinate systems is defined by the expression

a½ � ¼ x̂; ŷ; ẑ½ �, (4)

where x̂, ŷ and ẑ are unit vectors along x, y and z, respectively.

1.4. Nodal Cartesian coordinate system (rk sk tk)

The Cartesian coordinate system associated with each nodal point of the shell element has its
origin at the shell mid-surface. The vector in the tk direction is constructed from the nodal coordinates
of the top and bottom surfaces at node k so that t ¼ x

top
k � xbot

k , where xk ¼ [xk, yk, zk]
T and the

vector rk is perpendicular to sk and parallel to the global XZ plane, so that rx
k ¼ tz

k, r
y
k ¼ 0 and rz

k ¼ �tx
k; if tk is

coincident with the y direction (i.e. tx
k ¼ tz

k ¼ 0) then, rx
k ¼ �t

y
k; r

y
k ¼ rz

k ¼ 0 where the superscripts
refer to the vector components in the global coordinate system. The vector sk is perpendicular to
the plane defined by rk and tk, so that sk ¼ tk� rk. The unit vectors in the directions rk, sk and tk are
represented by r̂k, ŝk and t̂k, respectively. The vector t̂k defines the direction of the normal at node k which is
not necessarily perpendicular to the mid-surface at k. Vectors r̂k and ŝk define the rotations b2k and b1k,
respectively.

2. Element geometry and displacement field representation

In the isoparametric formulation the coordinates of a point within the element maybe expressed as

X ¼
X9
k¼1

Nkxmid
k þ

X9
k¼1

Nkhk

z
2

t̄x
k, (5)

Y ¼
X9
k¼1

Nkymid
k þ

X9
k¼1

Nkhk

z
2

t̄
y
k, (6)

Z ¼
X9
k¼1

Nkzmid
k þ

X9
k¼1

Nkhk

z
2

t̄z
k, (7)

where Xk, Yk, and Zk are the global Cartesian coordinates of the nodal point k. Nk ¼ Nk(x, Z), k ¼ 1,y, 9 are
the 2-D shape functions corresponding to the surface z ¼ constant. x, Z and z are the normalized coordinates
for the point under consideration. hk is the shell thickness at node k.
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As the strains in the directions normal to the mid-surface are assumed to be negligible, the displacement
throughout the element will be taken to be uniquely defined by the three Cartesian components of the mid-
surface node displacement and two rotations of the nodal vector tk about orthogonal directions normal to it.
The element displacement field can be expressed as

u ¼
X9
k¼1

Nkuk þ
X9
k¼1

Nkzhk r̄x
k � s̄x

k

� � b1k

b2k

" #
, (8)

v ¼
X9
k¼1

Nkvk þ
X9
k¼1

Nkzhk r̄
y
k � s̄

y
k

� � b1k

b2k

" #
, (9)

w ¼
X9
k¼1

Nkwk þ
X9
k¼1

Nkzhk r̄z
k � s̄z

k

� � b1k

b2k

" #
, (10)

where hk is the shell thickness at node k. As it is assumed that there is zero stress in the direction perpendicular
to the tangent plane, i.e., z ¼ constant surface, the constitutive relationship between the five stress and strain
components in the local coordinate system can be written as s0f g ¼ D̄

� �
�0f g.

The stress and strain components are, respectively,

s0 ¼

sx

sy

sxy

sxz

syz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

and �0 ¼

�x

�y

�xy

�xz

�yz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
, (11)

D ¼

Q11 Q12

Q21 Q22

Q33

Q44

Q55

2
6666664

3
7777775
, (12)

Q11 ¼
EL

1� uLTuTL

; Q12 ¼ uTL �Q11; Q22 ¼
ET

1� uLTuTL

,

Q66 ¼ G12; Q44 ¼ G13; Q55 ¼ G23, ð13Þ

where EL and ET are the longitudinal and transverse Young’s moduli along the respective material axis, uTL

and uLT are the Poisson’s ratio in the longitudinal and transverse direction, respectively. G12 G13 and G23 are
the shear moduli. Now,

D̄ ¼ T½ �T D½ � T½ �, (14)

where [T] is the transformation matrix which transforms the elasticity matrix in the material axis system to the
global coordinate system.
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The transformation matrix [T] is given by

T ¼

c2 s2 2cs

s2 c2 �2cs

�cs cs c2 � s2

c �s

s c

2
6666664

3
7777775
, (15)

where c ¼ cos y, s ¼ sin y and y is the angle between the material axis (L,T) with respect to the global (X,Y)
axis.

The strain displacement relation is given by

�x

�y

�xy

�yz

�xz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

qu

qx
qv

qy

qu

qy
þ

qv

qx

qw

qy
þ

qv

qz

qu

qz
þ

qw

qx

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

. (16)

The {u, v, w} displacements are written in terms of {uk, vk, wk} and {b1k, b2k}. This leads to

� ¼ B½ � uf g; uf gT ¼ u1; v1;w1;b11; b12; . . . ; u9; v9 . . . ;b29
� �

, (17)

with [B] representing the strain displacement matrix .

2.1. Stiffness evaluation

In the local coordinate system, the total potential energy for the degenerated shell is given as

P ¼
1

2

Z
v

�0
� �T

D½ � �0
� �

dV . (18)

Upon FE discretization minimization of P with respect to nodal variables we get in the form

K½ � df g ¼ f
� �

, (19)

where

K½ � ¼

Z
BT
� �

D̄
� �

B½ �dV , (20)

[B] is the strain displacement matrix and D̄
� �

is the constitutive matrix.
For the analysis of composites the stiffness matrix is obtained by integrating over the thickness t. This

formulation leads to shear and membrane locking when applied to thin shells, i.e., over stiff solutions are
obtained due to the development of spurious transverse shear and membrane strains. To prevent this, an
enhanced interpolation of the transverse shear strains in the natural coordinates x, Z, z is used to produce a
shear locking free element and an enhanced interpolation of the membrane strains in the local coordinates is
used to produce a membrane locking free element [4]. The assumed shear and membrane strains can be defined
in the following form:

gxz ¼
X3
i¼1

X2
j¼1

Pi Zð ÞQj xð Þg
ij
xz, (21)
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gZz ¼
X3
i¼1

X2
j¼1

Pi xð ÞQj Zð Þg
ij
Zz, (22)

�rr ¼
X3
i¼1

X2
j¼1

Pi rð ÞQj sð Þ�ij
rr, (23)

�ss ¼
X3
i¼1

X2
j¼1

Pi sð ÞQj rð Þ�ij
ss, (24)

�rs ¼
X3
i¼1

X2
j¼1

Pi rð ÞQj sð Þ�ij
rs, (25)

P1 rð Þ ¼
1

2
1þ

ffiffiffiffiffi
3r
p� �

; P2ðrÞ ¼
1

2
1�

ffiffiffiffiffi
3r
p� �

, (26)

Q1ðrÞ ¼
1

2
rðrþ 1Þ; Q2ðrÞ ¼ 1� r2; Q3ðrÞ ¼

1

2
rðr� 1Þ. (27)

2.2. Mass matrix

The mass matrix is obtained from the kinetic energy of the system. The kinetic energy is

KE ¼
r
2

Z
ð _uþ _vþ _wÞ2 dv, (28)

KE ¼
1

2
uT M½ �u. (29)

The consistent mass matrix [M] consists of parts corresponding to its translational and rotational dof.
Assuming uniform distribution of mass, the consistent mass matrix is

M ¼

Z
v

S½ �T r½ � S½ �dv, (30)

where r is the density.
The 5� 5 matrix r and the 5� 45 matrix [S] ¼ [S1 S2

� � S9] are

r ¼

r rh

r rh

r

rh
rh2

2

rh
rh2

2

2
66666666664

3
77777777775
, (31)

S½ �i ¼

N1 N1zh1r̄
x
1 N1zh1s̄

x
1

N1 N1zh1r̄
y
1 N1zh1s̄

y
1

N1 N1zh1r̄z
1 N1zh1s̄

z
1

N1

N1

2
6666664

3
7777775
. (32)
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2.3. Numerical studies

Seven numerical studies have been done to investigate the accuracy and reliability of the shell element that
has been developed based on the formulation that has been described in the previous sections. Results
obtained using the present study have been compared with the exact and numerical solutions available in the
literature. Plate and shell structures have been investigated.

2.3.1. Laminated square plate

Natural frequency analysis has been carried out for a thin laminated plate. Different lay up sequences have been
investigated for the thin plate with h/a ¼ 0.006. Material properties used are EL ¼ 2.45ET, G12 ¼ G13 ¼ 0.48ET,
G23 ¼ 0.48ET, n ¼ 0.23 and mass density r ¼ 8000. The dimensionless frequency parameter is given by

O ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rho2a4

D0

s
; D0 ¼ ELh3= 12 1� n12n21ð Þ½ �. (33)

Table 1 gives the dimensionless frequency of the plates with four edges simply supported. Table 2 gives the
dimensionless frequency of the plates with four edges clamped. The full plate is modeled. The results have been
compared with the solution given by Dai [6], Leissa [7] and Chow [8]. The results agree well with the results
presented by them although the present formulation shows lower frequencies (about 5%) than those cases.

2.3.2. Two layered composite cylindrical panel

The panel has R ¼ 100m and l ¼ 20m. Therefore R/l ¼ 5. The total thickness of the panels examined are
h ¼ 2 and 0.2m. i.e. the side length to thickness ratios are 10 and 100. All layers are of equal thickness and
same material. The fiber angle orientation considered is 0/90. The material properties of the layers have the
following values: EL ¼ 2.5� 1011, ET ¼ EL/25, G12 ¼ G13 ¼ 0.5ET, G23 ¼ 0.2ET, n ¼ 0.25 and mass density
r ¼ 1000 kg/m3. The panel is simply supported on all four edges. The full panel is modeled. The 5� 5 mesh is
used in the computation of the natural frequencies associated with the fundamental doubly symmetric modes.
The results are compared with the solutions given by Reddy [9] and Liu [10]. Table 3 shows the dimensionless
fundamental natural frequency for the doubly symmetric modes for the cylindrical panel. The results obtained
by the present formulation agree well with the results of Reddy and Liu. The frequencies has been normalized
using the equation

b ¼
wl2

h

ffiffiffiffiffi
r
Et

r
. (34)
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Table 1

Natural normalized frequency O of laminated square plates (h ¼ 0.06, h/a ¼ 0.006), Boundary condition: Simply supported on all sides

Ply angle Source Modes O

1 2 3 4 5 6

0,0,0 Present 14.06 30.08 41.12 56.17 59.72 83.42

Dai [6] 15.19 33.30 44.42 60.78 64.53 90.29

Leissa [7] 15.17 33.32 44.51 60.78 64.79 90.42

15/–15/15 Present 14.24 31.47 40.58 56.03 61.69 84.27

Dai [6] 15.43 34.09 43.80 60.85 66.67 91.40

Leissa [7] 15.40 34.12 43.96 60.91 66.92 91.76

30/–30/30 Present 14.62 32.93 39.37 56.21 66.24 79.21

Dai [6] 15.90 35.86 42.62 61.45 71.71 85.72

Leissa [7] 15.87 35.92 42.70 61.53 71.10 86.31

45/–45/45 Present 14.82 33.78 38.64 56.40 70.94 74.04

Dai [6] 16.14 36.93 41.81 61.85 77.04 80.00

Leissa [7] 16.10 37.00 41.89 61.93 77.99 80.11
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2.3.3. Thick laminated rectangular plate

The plate considered here is a rectangular carbon/epoxy plate with dimensions 150� 100� 40mm3. The
fiber angle orientation of the eight layered laminate is (0/90)2s.

The span to depth and span to thickness ratios are 1.5 and 3.75, respectively, which corresponds to a thick
laminated structure. The material properties chosen are EL ¼ 114GPa, ET ¼ 8.0GPa, G12 ¼ G13 ¼ 3.1GPa,
G23 ¼ 2.9GPa, n ¼ 0.29 and mass density r ¼ 1480 kg/m3. The plate is free on all four edges and the full plate
is modeled. The first three natural frequencies are compared with the results presented by Cugnoni [11] in
Table 4. The present results show good agreement with the literature.

2.3.4. Laminated square plate for different a/h ratios

The plate considered here is a square laminated plate. The fiber angle orientations of the four
layered laminate is (0/90)s. The material properties are similar to the laminated rectangular plate
mentioned in the above section. The plate has a thickness h and side dimension a. The span to thickness
(a/h) is varying from 4 to 100. Four cases with a/h ¼ 4, 10, 20 and 100 are looked investigated. The plate is
simply supported on all four edges. The full plate is modeled. The natural frequencies are normalized using the
equation:

ba ¼ o

ffiffiffiffiffiffiffiffiffiffi
a4r

Eth
2

s
. (35)

Table 5 gives the dimensionless natural frequency for different a/h ratios. The results agree well with
Cugnoni [11].
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Table 2

Natural normalized frequency O of laminated square plates (h ¼ 0.06, h/a ¼ 0.006), Boundary condition: Clamped on all sides

Ply angle Source Modes O

1 2 3 4 5 6

0,0,0 Present 26.96 47.05 62.30 79.22 80.72 109.58

Dai [6] 29.27 51.21 67.94 86.25 87.97 119.3

Chow [8] 29.13 50.82 67.29 85.67 87.14 118.6

15/–15/15 Present 26.76 27.8� 47.55 49.3� 61.01 77.98 83.12 109.94

Dai [6] 29.07 51.83 66.55 85.17 90.56 120.0

Chow [8] 28.92 51.43 65.92 84.55 89.76 119.3

30/–30/30 Present 26.37 48.98 58.01 76.99 88.12 105.62

Dai [6] 28.69 53.57 63.26 84.43 96.15 115.5

Chow [8] 28.55 53.15 62.71 83.83 95.21 114.1

45/–45/45 Present 26.18 50.19 56.01 76.67 94.14 97.91

Dai [6] 28.50 55.11 60.94 84.25 103.2 106.7

Chow [8] 28.38 54.65 60.45 83.65 102.0 105.6

�Frequencies obtained by not considering the effect of rotational component of displacement in the inertia calculation.

Table 3

Normalized fundamental natural frequencies b for doubly symmetric modes of cylindrical panel

Lamina stacking sequence 0/90

Thickness, h (m) 2 0.2

Normalized frequency—Present (b) 9.1 17.7

Normalized frequency—Reddy [9] (b) 8.9 16.7

Normalized frequency—Liu [10] (b) 8.4 17.39
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2.3.5. Layered thin spherical panel

A nine-layered laminated composite spherical panel is considered. The panel has radius R ¼ 100m
and side length l ¼ 1m. The thickness of the panel is h ¼ 0.01. Fiber angle orientation is (0/90/0/90/0/90/0/90/
0). The material for all the layers are graphite/epoxy composite having EL ¼ 2.0685� 1011, ET ¼ EL/40,
G12 ¼ G13 ¼ 0.5 ET, G23 ¼ 0.6 ET, n ¼ 0.25 and mass density r ¼ 1605 kg/m3. The panel is clamped
on all four edges. The full panel is modeled. The natural frequencies are normalized using
the equation:

l ¼
wl2

h

ffiffiffiffiffi
r
Et

r
. (36)

Table 6 gives the first three normalized natural frequencies for the doubly symmetric modes of nine-layered
spherical panel. The present results agree well with the solutions given by Liu [10]. The first eight mode shapes
for the layered spherical panel are shown in Fig. 2. A convergence study has been done for this case. A 2� 2,
5� 5, 8� 8 and 15� 15 mesh have been examined. It can be found from Table 7 that the results are
converging with the increase in mesh size.

Rotational components of the displacement are modeled to obtain the inertia effects, which could
explain the fact that the frequencies predicted by the present formulation are always on the lower
side, when benchmarked with the literature. When they are neglected the frequencies increase as seen
for one sample case in Table 2. These effects are more significant in thin shells when compared to
thick shells.
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Table 4

Natural frequencies for laminated thick rectangular plate

Mode Numerical results (Hz)

Present Cugnoni [11] Cugnoni [11] Cugnoni [11]

(FSDT) (3D) (HSDT)

1 3148 3045 3051 3045

2 6454 7104 7304 7113

3 7520 7819 7990 7819

Table 5

Natural frequencies for laminated thick rectangular plate

a/h Numerical results ba

Present Cugnoni [11] Cugnoni [11] Carrera [12]

(FSDT) (HSDT) (Closed form)

4 8.82 9.388 9.960 9.473

10 14.41 15.13 15.57 15.34

20 16.98 17.65 17.83 17.70

100 18.23 18.82 18.75 18.76

Table 6

First three natural frequencies for doubly symmetric modes of nine layered thin spherical panel

Mode l Present Liu

1 67.523 67.63

2 143.07 146.97

3 184.46 171.87

S. Jayasankar et al. / Journal of Sound and Vibration 299 (2007) 1–11 9



3. Conclusions

A nine-node degenerate shell element has been developed for the free vibration analysis of laminated
composite. The shell element works for both thick and thin shells. An enhanced interpolation of the transverse
shear strains in the natural coordinates is used in this formulation to produce a shear locking free element and
an enhanced interpolation of the membrane strains in the local coordinates is used to produce a membrane
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(iii) (iv)

(v) (vi)

(vii) (viii)

Fig. 2. (i) Spherical panel. (ii)–(viii) Mode shapes for nine-layered spherical panel.

Table 7

Convergence study for nine layered spherical panel

Mesh Normalized natural frequency l

Mode 1 Mode 2 Mode 3 Mode 4

2� 2 71.14 106.80 131.40 155.32

5� 5 67.78 84.78 100.63 114.94

8� 8 67.44 84.24 99.84 113.86

15� 15 67.43 84.16 99.71 113.70
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locking free element. The interpolation functions used in formulating the assumed strains is based on the
Lagrangian interpolation polynomials. Numerical studies have been done to investigate the accuracy and
reliability of the shell element that has been developed based on the formulation that has been described in the
previous sections. Several numerical examples are presented for laminates with different side to thickness
ratios, material properties, boundary conditions and ply angles. Results obtained using the present study has
been compared with the exact and solutions available in the literature. Transverse rotary inertia effects are
modeled, which could explain the fact that the frequencies predicted by the present formulation are always on
the lower side, when benchmarked with the literature. These effects would be significant in thick shells. It was
seen that the results obtained using the present formulation shows good agreement with the results available in
the literature which illustrate the robustness and efficiency of the present method.
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